Fekete Polynomials and Shapes of Julia Sets

نویسنده

  • KATHRYN A. LINDSEY
چکیده

We prove that a nonempty, proper subset S of the complex plane can be approximated in a strong sense by polynomial filled Julia sets if and only if S is bounded and Ĉ \ int(S) is connected. The proof that such a set is approximable by filled Julia sets is constructive and relies on Fekete polynomials. Illustrative examples are presented. We also prove an estimate for the rate of approximation in terms of geometric and potential theoretic quantities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological, Geometric and Complex Analytic Properties of Julia Sets

In this paper, we discuss several aspects of Julia sets, as well as those of the Mandelbrot set. We are interested in topological properties such as connectivity and local connectivity, geometric properties such as Hausdorff dimension and Lebesgue measure, and complex analytic properties such as holomorphic removability. As one can easily see from the pictures of numerical experiments, there is...

متن کامل

The Fekete – Szegő theorem with splitting conditions : Part

A classical theorem of Fekete and Szegő [4] says that if E is a compact set in the complex plane, stable under complex conjugation and having logarithmic capacity γ(E) ≥ 1, then every neighborhood of E contains infinitely many conjugate sets of algebraic integers. Raphael Robinson [5] refined this, showing that if E is contained in the real line, then every neighborhood of E contains infinitely...

متن کامل

On a Conjecture of E.a. Rakhmanov

It is shown that a conjecture of E.A. Rakhmanov is true concerning the zero distribution of orthogonal polynomials with respect to a measure having a discrete real support. We also discuss the case of extremal polynomials with respect to some discrete L p {norm, 0 < p 1, and give an extension to complex supports. Furthermore, we present properties of weighted Fekete points with respect to discr...

متن کامل

Cubic Superior Julia Sets

Bodil Branner and John Hubbard produced the first extensive study of iterated complex maps for cubic polynomials in Picard orbit [Acta Math., 160(3-4):1988, 143-206]. Since then few researchers worked on Julia sets for cubic polynomials. In 2004, Rani and Kumar [J. Korea Soc. Math. Educ. Ser. D; Research in Math. Educ., 8(4):2004, 261-277] studied cubic polynomials in superior orbit and gave im...

متن کامل

The Multivariate Integer Chebyshev Problem

The multivariate integer Chebyshev problem is to find polynomials with integer coefficients that minimize the supremum norm over a compact set in C. We study this problem on general sets, but devote special attention to product sets such as cube and polydisk. We also establish a multivariate analog of the Hilbert-Fekete upper bound for the integer Chebyshev constant, which depends on the dimens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017